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Kinetic approach to the Gaussian thermostat in a dilute sheared gas in the thermodynamic limit
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A dilute gas of particles with short range interactions is considered in a shearing stationary state. A Gaussian
thermostat keeps the total kinetic energy constant. For infinitely many particles it is shown that the thermostat
becomes a friction force with constant friction coefficient. For finite number of partidjebe fluctuations
around this constant are of orderyN, and distributed approximately Gaussian with deviations for large
fluctuations. These deviations prohibit a derivation of fluctuation-dissipation relations far from equilibrium,
based on the fluctuation theore$1063-651X99)12610-2

PACS numbse(s): 05.20.Dd, 05.40-a, 05.45-a

The interest in the relation between nonequilibrium statisisoenergetic, constant, etc) of the thermostat should not
tical mechanics and microscopic equations of motion, whichnfluence the average af in the thermodynamic limit. Co-
already occupied Boltzmann, has revived in recent years, ohen[9] suggested that a mechanical and a physical thermo-
the one hand due to the development of chaos theory, bstat may give the same results as long as the rate of heating
even more due to results from nonequilibrium molecular dy4s much less than the rate at which heat can be transported to
namics[1,2]. The main focus in the field is on stationary the wall and absorbed there. This suggests that when the rate
states. A stationary state, if it is not the equilibrium state, isof heating becomes too large, the thermostat does make a
the result of an external driving force. But this force per-difference. At that point one also expects the assumption of
forms work on the system, so it heats (pscous heating, local equilibrium underlying nonequilibrium thermodynam-
Ohmic heating In simulations this is often remedied by the IS t0 break down, and the entropy production may no longer

introduction of a mechanical thermostat: one adds a frictiorh"’“’(e the form that was u_sed to identify it with .
- ) ) > We want to know which thermostat to use for analytic
force, — avj, in the equation of motion for the velocity of

Vi treatment of dilute gases in nonequilibrium stationary states.
each particle, to keep the energy constant. For the thermo-ag we are interested in the limit of many particles, having to

stat variablea there are several choices. One could take it ;se anq dependent on all these particles would certainly
constant, but then one only gets a constant energy on aveake work more difficult. In other analytic work on non-
age. It is also possible to havetime dependent, such that equilibrium stationary states, one simply takes a constant
the total kinetic energy is constafisokinetic Gaussian ther- [10,11]. A sketch of a proof of the equivalence of a Gaussian
mostaj or the total energy is constatisoenergetic Gaussian isokinetic thermostat, a Gaussian isoenergetic thermostat,
thermostat[2]. Neither of these thermostats are very realis-and a NoseHoover thermostat, was already given by Evans
tic, as the dissipation of the heating would more likely occurand Sarmarn12]. In this paper, we will demonstrate the
at the boundary, where the system is in contact with a heatquivalence of an isokinetic Gaussian thermostat and a con-
bath, say. Other boundary formulations where the drivingstant thermostat in the thermodynamic limit using kinetic
force and the thermostat are combined have also been stutheory on the Boltzmann levdl.e., at low densitiesfor a

ied [3,4]. One hopes the choice of the thermostat doesn’sheared system of short range interacting particles.

matter in the thermodynamic limit. The equivalence of a

constanta thermostat, the isokinetic thermostat and isoener- I. SHEARED GAS WITH SLLOD

getic thermostat was proposed by Gallavai.

The extra term in the equations of motion destroys the \we consider a dilute gas o particles ind dimensions,

Liouvillian character of the flow: a given volume in phase ,nder shear: the gas is contained between two plates a dis-

space _WiII not reFa_in tha_t volume. As the available pha‘_setance 2 apart(Fig. 1). The two plates are moving in oppo-
space is usua_\lly finite, this means that on average over timgie directions with a velocityL. For not too largey one
the volume either stays constaebnservative cageor con-

tracts(dissipative case In a dissipative system a stationary vL
state can exist only on a course grained scale; the dissipation —>
continues forever but on ever finer scales. This dissipation [—
happens at a rate called the phase space contraction rate y

which is proportional to the average of the thermostat vari- 2L L

able «. This rate can be identifigd, 7] with the irreversible X

entropy production8]. If we make this identification with a an
physical quantity, the precise implementatigisokinetic, £ |

L

*Electronic address: R.vanZon@phys.uu.nl FIG. 1. Velocity profile in a gas under shear.
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expects that a linear velocity profile will develop, so that the Il. KINETIC APPROACH

fluid velocity aty is yyx. . A. Effective motion of the thermostat
We are interested in bulk properties, so we llego to

infinity, while the shear rate and the density are fixed. To e . i ; e
show the equivalence of the constantthermostat and the the posmon.and veIOC|_ty of every particle, qnd so it varies in
Gaussian thermostat, it would in principle suffice just to takelime. We will now derive equations of motion for the t.h_er'
the horizontal dimensions infinite, but this way we can alsgnoStat for which we do not need to know all these positions
move the boundary conditions to infinity. In the real physical@"d velocities, by introducing one exira thermostat variable
system, ad get larger, the laminar flow becomes unstableS- The derivation is in two steps: first we conS|d§r'free flight,
and the system eventually develops turbulence. However, tHdd then we take into account the effect of collisions.
thermostats we will consider assume the stability of the lami- During free flightF is zero so the thermostat is given by
nar flow[2], and suppress turbulence.

The Gaussian thermostat involves anthat depends on

There is a well known and often used set of equations for o= i 2 — ¥PiyPix 3
molecular simulations that describe shear, the Slso- N1 2K/N
named because of its close relationship to the Dolls tensor
algorithm equationd 2]: Using the equations of motion, one finds that the time de-
) rivative is
gi=Ppit YYiX, ) 5 N
| 2, 7 _ 2
o R . a=—2«a +R2 piy=—2a°+B, (4
pi=Fi— ypiyX—ap;, 3] =1

where we have defined the last part as the second thermostat

in which g; ,p; are the phase space coordinates of particle variable :

« is the thermostat variable, arfé represents the forces
between the particles. The mass of the particles is taken to be

one. The shear rate is constant, huis not. It is constructed B=
such that the kinetic enerdg=3;|p;|/2 in the system is

exactly constant, which gives We combine these to the thermostat veofisr(«, ). The
time derivative of3 is expressable again in terms efand

N
Y7pi,

=1 2K/N

®

Z| -

N
1 - - .
CY:Rigl (Fi-Pi— ¥PixPiy)- 4 |
B=—2ap. (6)
This is the isokinetic Gaussian thermostat. Note thale- . _
pends on the positions and momenta of all the particles. There is a conserved quantity

The interpretation of Eq(1) is that 5i is the peculiar 5
velocity of particlei with respect to the local fluid element H= a’—p

that has velocityyy§<. In the laboratory frame, a reasonable 2%

set of equations to write down is ) ]
After change of variables t&X=1/(28) and P=a/g, this

conserved quantity takes on a Hamiltonian fokh§X,P)

=1pP?2-X. The equations of motion ar¥=P and P=1.
This particular form of the thermostat term is chosen becaus&he general solution, transformed backéohas the form
a linear velocity profile is expected, and we want the tem-

perature to be constant, so the kinetic energy in the frame 1 t—tg
that moves with that local velocity is to be dissipated. A “t):m< 1 )
Boltzmann equation for the one-particle distribution function 0

will give an appropriate description at low densities. Thisyith ¢, a constant.

equation has to be supplemented by the boundary condition gq far, we only considered free flight. The duration of a
that the average velocities at the boundanes*L are free flight is very small in a system of particles: it is of the
+yL. To getrid of theL. dependence, one can transform thegrder of (N») 1, where v is the collision frequency of a
velocities to peculiar velocitieg;=v;— yy;X. The average single patrticle. In a collisiong changes by an amount
(peculiay velocity now has to be zero at the boundaries, so

Gi=Vi, Vi=Fi—a(Vi—yyX).

whenL —« they have to be zero at infinity: this is the same — v [ P1xP1yt P2xP2y— P1xP1y~ PaxPay
boundary condition as for the standard Boltzmann equation. Aozﬁ — P2+ ps2—p2,—pa ]
The transformation to peculiar velocities yields the Sllod y Fay Fly Py

equations &p1.p2.0)
. . - N
gi=Vi=pityYiX,
o where primes denote the value of the variables after colli-
Pi=Vi— yYix=F;— ap;— ypiyX. sions andn is the collision parameter, i.e.n=(pj;
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—521)/||5§1— 521”- As K is of the ordem, A @is of the order Mann equation, SO we will have a system of two coupled
of N~ L. @itself is of the order of 1. The definition makes Boltzmann equations fof and F. To derive the standard

of the order of 1. During a typical free flight time of one Boltzmann equatiofl3] for f, one uses the Stosszahlansatz

: ~ . that states that the two-particle distribution function
particle, every particle in the system has collided once on .

average. In each collision two particles are involvedNé¢d f2(p1.,p) is proportional to the product of the one particle

collisions have taken place in the system during this timedistribution functionsf (p;)f(p,), i.e., that the two particles

Thus, during one free flight time, the thermostat ¢g¢®  are uncorrelated when they collide. We want a generalization

changes of ordeN ™~ and this adds up to an effect of order of the Stosszahlansatz foP, but setting P(ﬁl,ﬁz 0)

1, because, as we will see, the average éfis nonzero. =f(p,)f(p,)F(6) can't quite be right for the following rea-
We will see later that the effect of the thermostat dependygp,

ing on all the particles, an unphysical idea in some sense, The Stosszahlansatz can be generated by taking the phase
results just in a fluctuating thermostat with well def'nedspace densﬂy)({p,}) to beHN 1f(p.) i.e., all the particles

mean and distribution. We are interested in this distribution, | v thi
It will depend on the distribution oA 8, which depends on are uncorrelatedarguably, this is too strong a condition, but
’ it will serve to make our point Let

the velocity distribution in the system, which in turn is af-

fected by the thermostat distribution. But some general prop- — YPyPx
erties can already be derived without this subtle interplay. s(p)— y )
We want to write down a Boltzmann equation for the 2K\ 2 py
probability distribution functiorF(6;t) of the thermostat
such that
(7F+ J (¢'9F)—(9F @ 1 N
a - 90 at c' :NZ s(P|
Here @ is given by Egs.(4) and (6). The collision integral then the quantity
counts the number of states that are lost and gained in coII|-
sions: N
u 2, 04(p)
r :fdwd61d62p(51152;0*;t)fdﬁ H(pl,Pz,o)EJdps---deP({pi})5 0-—QN—2
Cc
M. =f(p)f(P)D(0)
rate of (py,p,,N)
g factorizes, because the delta function doesn’t invqﬁyand
x{ S| -6 — N) —8(0— 0*)] , p,. One easily derives that
.. . N 12 [. . N&—6(p)—6sp
in which P is the joint distribution ofp;, p,, and 6, and P(pl,p2,0)=[m] H( P1,P2, Si\?i)z S(pZ))
N . .
rate of (py,po,N)== pB(n Po1), and this does not factorize.

P does however factorize to zeroth order when we expand

- - - . o . in N™1. To see this, we first expand the expressionfdn
wherep,,=p,—p;. Bis the rate of collisions witl given  arms of the factorizedl:

that the colliding particles have relative velocjy;. It can

be expressed in the differential cross secgm, 521), which 5 Bs ) =F(B) (B D(O)] 1+ —

measures the number of deflected particles per unit solid (P1:P2: O =T(P1)T(p2)| P(6) 1+

angle arouncﬁg1 when a beam of particles of unit density is 1 oD

incident on one other particle. khdimensions, +N[20_ 04p1)— 04(p2)] =& +(’)(N 2).

BA 520 = 15arllS(R. B 291 A B 82 o
(,P20) = |2l s(n. P20 In-pad *% F(6) is given by fdp;dp,P(p;,p,,6) so integrating the

where p,;=p,1/||p21l. The last factor is the Jacobian that above formula gives a relation betweerand ®:
arises because we integrate omewhile s is defined per unit

solid angle of pj,. Strictly, we ought to takep,—p; FO) =20+ 5
+ yX(Y,—Y;) instead of§21, but in the Boltzmann approach

the two particles are taken at the same position when theyhere(6,)= [dpf(p) 6(p). This relation can be inverted up
collide. In an Enskog-type approach this would matter. to orderN—1,
To proceed, we need an expression Foin terms ofF

and the one particle distribution functidr(ﬁ), which we
will take normalized to 1. Fof, we can also write a Boltz-

1 b
4D(0)+2[ 0— <0S>] ~|—(9(N 2),

O(N™?).

1 JF
<I>(0)=F(0)—N{4F(0)-1—2[0—(05)]-W9 +



PRE 60 KINETIC APPROACH TO THE GAUSSIAN THERMOSTA.. .. 4161

When we put this back into the the formula fey we getP
expressed in terms dfandF, 10 |

N - - 1 N
P(plipz,(’):f(pl)f(pz): F(0)+N[2<05>_ 0,(p1)

- JF _2 B 05 |
= 64p;)] 51 FON72). :
This will serve as our Stosszahlansatz. We insert it in the
collision integral and perform th€* integration,
0.0 -
dF S s A ~ - & OF -1.0 0.0 1.0
T C—_(f dpldpzdnf(pl)f(pz)PB(n,pzﬂi}'a_o a
1 e e A o - ~ - & -
+ 1 | dPdp2dnf(py)f(p2)pB(n,p21)5 [6s(P1) 10 |
+04(py) —2( 0]} ”°F 8
{(P2) = 2(0)] 1 2o, ®
where we expanded iN~* once more. We define the colli- 05 |
sional averages:
a| 1 e e o - n o I
=3 | BB (5,) (5B o) By o).
0.0 :
The Boltzmann equation for the thermostat can now be writ- -1.0 0.0 1.0
ten as o
JF P P FIG. 2. Some typicaP trajectories of the thermostat. The first
figure is without collisions, the second one is with collisional aver-
—+ —{[—2a%+ B+ + —{[-2aB+ 9 ,
ot ﬁa{[ 2o+ pralF}) 5,8{[ 2ap+b]F} agesa andb set to the arbitrary values 6f 0.18 and 0.04, respec-
tively.

=O(N"1).

This is of the form of Eq(7) in which points in the phase  tions in Egs.(3) and (5), one can see thatj<g,, so the
space follow the effective free flight dynamics eigenvalues are complex and the fixed point is a stable spiral.
If we take an initial distribution within the domain of attrac-

—2a’+pB+a tion, all points will end up in this fixed point. Thus, in the
| —on B+b stationary state, the distribution of the thermostat &fanc-
tion at 6,
This amounts to just adding the average effect of collisions
to the change o#. F(0)=35(0— 6y).

Some typical trajectories i phase space are plotted in
Fig. 2, both with and without the effect of collisions. When
(a,b)#0, it is no longer possible to derive the equations of  B. Boltzmann equation for the one particle distribution
motion from a Hamiltonian: the motion is dissipative, and function

there exists a fixed poiry=(ao, Bo), defined by As we mentioned, the analysis is not complete without a

—2a+Bo+a=0; 2aBo=Dh. (99  second Boltzmann equation, for the one particle distribution
functionf(p;t). The difficult parta priori is what to do with
Physically, one expects the system to heat up without a thethe free flight term—ap;. The analysis of the thermostat

mostat, so the thermostat should act as a frictieiis posi-  yariables, however, showed that theis, in the stationary
tive. To consider the stability of the fixed point, we linearize case, a constant, so we just replacey aq:

the equation of motion around it. WritinG= 6,+ 56, we get
4C¥0 - 1

AR {[— ypyx—aop]f}=J(f,f)
. L - - X— = L] L
50— — p YPyX— apPp

ZBO 2680

) 56. (10 at

The eigenvalues of the matrix arexg@+ \/aOZ—Z,BO. Bo is  where we considered again only the uniform case. For the
positive, so the fixed point is stable onlyaf>0, consistent stationary case we are also interested in the time derivative
with the physical expectation. Furthermore, from the defini-disappears. The collision integral[i$3]
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J(f,f)

p=py™ J dp,dnpB(n,p2{f(P)(P2)
—f(p)f(p2)}.

In some analytic work10,11], a constantr is also used and

R. van ZON
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wards a fixed point from the left-hand side, this will make
the thermostat distributioR peaked around this point, with a
width of orderN~*2 For largeN the width is so small that
the linearized equation, E¢LO0), is a good approximation for
most of the distribution. For a linear fixed point, the distri-
bution would be Gaussian. So the distributiBt, 8) will

its value is determined by demanding that the second mdsecome Gaussian for lardé except in the tails, where the

ment (||p|2)= f|pll>f(p)dp is a conserved quantity. This
yields

B y( PxPy)
(Ipl%)

Note that(||p||?) is constant and equal tokZN, so this
choice ofw is very analogous to E@3). In fact the solution
of Eq. (9) determining the thermostat fixed point, is this
together with

11

, (P
(IIpll?

To show this we considex and b,

B=vy 12

e
2= ;| ABAPIAB(R. B 1B (52)
1 ! ! ! !
X E{plxp1y+ p2xp2y_ P1xP1y— p2xp2y}
~ 2 [ dpudBdnpB(h, P
T o 1 2 M2 1xM1
(Ipl?) o
X{F(PDT(p2) —F(P1)f(P2)}

Y

(IlplI?)

fdﬁJ(f,fmxpy,

= —‘}/2
(IlplI?)

We insert forJ(f,f) the left-hand side of the Boltzmann
equation and find after partial integration

b fdﬁJ(f,f)pj

(Pxpy) 5 (PY)

= = fy = :2 —B’
ey 7 ey
(p3)
b=2a 72»—220( B.
Ty T

Combined with Eqg.(9), we see that indeed af,B0)
=(a,B) given by Egs.(11) and(12), is the self-consistent
solution.

IIl. THERMOSTAT FLUCTUATIONS

linearized equation does not hold.
The Gaussian nature of the distribution also carries over
to the finite time average af,

a= %ffa(t)dt.

0

For large timesr, the thermostat will spend a long time in

the neighborhood of the fixed point,8,), SO @ will also

be Gaussian distributed for lardé but, again, with devia-
tions for large fluctuations. This all is in accordance with
what one would expect from a central limit theorem.

Bonettoet al.[14] find a Gaussian distribution far, but
mention that the Gaussian was not what they expected, in
fact, that it couldn’t be Gaussian, because it would give a
kind of generalized fluctuation-dissipation relati@ee also
[15]) when combined with the fluctuation theorem of Gal-
lavotti and Coheri16].

However, the deviations from the Gaussian nature at large
fluctuations prohibit this derivation of far-from-equilibrium
fluctuation-dissipation relations. The fluctuation theorem

states that the probabilityr(p) of finding that o is pag,
divided by the probability that it is- pa, satisfies for large

T,

m(p)
m(—p)

=ex{d rdNeagp].

The result was found for Anosov systems, but has been
found in numerical simulationgl7] and in Langevin equa-
tions [18] too, and seems to have a broader validit@].
Combined with a Gaussian form af, one gets a relation
between the variance and the mean of the distribution, i.e., a
kind of fluctuation-dissipation relation. The variance can be
linked to a correlation function anégeneralizefl Green-
Kubo formulas emergd14]. But for these to hold, the

Gaussian character has to be guaranteed for negataiso,
and the central limit theorem, nor an extension of the analy-
sis given here, could justify that. Recently this was acknowl-
edged by Searles and Eva)| and the Green-Kubo rela-
tions far from equilibrium were refuted in their molecular
dynamics simulations. This does not totally explain the re-
sults of Bonetteet al.[14], who get a Gaussia(p) for just
10 particles, the Gaussian clearly covering negativas
well. There are of course uninvestigated prefactors in the
widths of the Gaussian and in range of validity.

Only when we are near equilibrium the fluctuation theo-
rem and the central limit theorem can be combined, provided
we first take the limit of the external field going to zero

When N is finite, there are fluctuations around the ther-before we take the thermodynamic limit, even though we can
mostat valuayy. One can see that the first correction, on thetake a large number of particles throughout. In such a

right-hand side of Eq(8) has a diffusive form, with a diffu-
sion coefficient of ordeN 1. Combined with the drift to-

scheme, the distributionr(p) is centered almost around
zero, such that it always applies to some negapive
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IV. CONCLUSIONS one derivation at leagtl4] on the fluctuation theorerfi6],
. . which concerns large fluctuations. The breakdown of such
We have treated the Gaussian thermostat in a sheared sysco o, hq relations recently found by Searles and Evans

kinetic equations. We found that in the thermodynamic Iimitgtzo] has its origin in the deviations from the Gaussian nature
9 ‘ L y 'for large fluctuations. Near equilibrium one doesn’t need the
the thermostat force becomes a friction force with a constar\t

friction coefficient. The value of this constant was shown to - 9° fluctuations,
be consistent with the requirement that the second moment
of the one particle distribution function is conserved. This
conclusion did not depend on a smallness of the shear rate, The author thanks Professor H. van Beijeren, Professor
so it applies also far from equilibrium. The constant friction J.R. Dorfman, and Professor E.G.D. Cohen for valuable dis-
force has been used in other wdrk0,11] and the results cussions. He acknowledges the hospitality and support of the
from those should apply equally to Gaussian thermostattethstitute of Science and Technology at the University of
systems, in the thermodynamic limit. Maryland in College Park and of the Rockefeller University

We briefly discussed finit&l corrections. These give rise in New York. The work reported here was supported by
to fluctuations of the friction coefficient around its mean, of FOM, SMC, and by the NWO Priority Program Non-Linear
the order of 14/N. The fluctuations are close to Gaussian forSystems, which are financially supported by the “Neder-
large N, except for very large fluctuations away from the landse Organisatie voor Wetenschappelijk Onderzoek
mean. Far-from-equilibrium Green-Kubo relations rely in (NWO).”
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