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Kinetic approach to the Gaussian thermostat in a dilute sheared gas in the thermodynamic limit

R. van Zon*
Institute for Theoretical Physics, University of Utrecht, Princetonplein 5, 3584 CC Utrecht, The Netherlands

~Received 4 May 1999!

A dilute gas of particles with short range interactions is considered in a shearing stationary state. A Gaussian
thermostat keeps the total kinetic energy constant. For infinitely many particles it is shown that the thermostat
becomes a friction force with constant friction coefficient. For finite number of particlesN, the fluctuations
around this constant are of order 1/AN, and distributed approximately Gaussian with deviations for large
fluctuations. These deviations prohibit a derivation of fluctuation-dissipation relations far from equilibrium,
based on the fluctuation theorem.@S1063-651X~99!12610-2#

PACS number~s!: 05.20.Dd, 05.40.2a, 05.45.2a
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The interest in the relation between nonequilibrium sta
tical mechanics and microscopic equations of motion, wh
already occupied Boltzmann, has revived in recent years
the one hand due to the development of chaos theory,
even more due to results from nonequilibrium molecular
namics @1,2#. The main focus in the field is on stationa
states. A stationary state, if it is not the equilibrium state
the result of an external driving force. But this force pe
forms work on the system, so it heats up~viscous heating,
Ohmic heating!. In simulations this is often remedied by th
introduction of a mechanical thermostat: one adds a frict

force,2avW i , in the equation of motion for the velocityvW i of
each particlei, to keep the energy constant. For the therm
stat variablea there are several choices. One could take
constant, but then one only gets a constant energy on a
age. It is also possible to havea time dependent, such tha
the total kinetic energy is constant~isokinetic Gaussian ther
mostat! or the total energy is constant~isoenergetic Gaussia
thermostat! @2#. Neither of these thermostats are very rea
tic, as the dissipation of the heating would more likely occ
at the boundary, where the system is in contact with a h
bath, say. Other boundary formulations where the driv
force and the thermostat are combined have also been
ied @3,4#. One hopes the choice of the thermostat does
matter in the thermodynamic limit. The equivalence of
constanta thermostat, the isokinetic thermostat and isoen
getic thermostat was proposed by Gallavotti@5#.

The extra term in the equations of motion destroys
Liouvillian character of the flow: a given volume in pha
space will not retain that volume. As the available pha
space is usually finite, this means that on average over
the volume either stays constant~conservative case! or con-
tracts~dissipative case!. In a dissipative system a stationa
state can exist only on a course grained scale; the dissipa
continues forever but on ever finer scales. This dissipa
happens at a rate called the phase space contraction
which is proportional to the average of the thermostat v
ablea. This rate can be identified@6,7# with the irreversible
entropy production@8#. If we make this identification with a
physical quantity, the precise implementation~isokinetic,
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isoenergetic, constanta, etc.! of the thermostat should no
influence the average ofa in the thermodynamic limit. Co-
hen @9# suggested that a mechanical and a physical ther
stat may give the same results as long as the rate of hea
is much less than the rate at which heat can be transporte
the wall and absorbed there. This suggests that when the
of heating becomes too large, the thermostat does ma
difference. At that point one also expects the assumption
local equilibrium underlying nonequilibrium thermodynam
ics to break down, and the entropy production may no lon
have the form that was used to identify it witha.

We want to know which thermostat to use for analy
treatment of dilute gases in nonequilibrium stationary sta
As we are interested in the limit of many particles, having
use ana dependent on all these particles would certain
make work more difficult. In other analytic work on non
equilibrium stationary states, one simply takes a constana
@10,11#. A sketch of a proof of the equivalence of a Gauss
isokinetic thermostat, a Gaussian isoenergetic thermo
and a Nose´-Hoover thermostat, was already given by Eva
and Sarman@12#. In this paper, we will demonstrate th
equivalence of an isokinetic Gaussian thermostat and a
stant thermostat in the thermodynamic limit using kine
theory on the Boltzmann level~i.e., at low densities! for a
sheared system of short range interacting particles.

I. SHEARED GAS WITH SLLOD

We consider a dilute gas ofN particles ind dimensions,
under shear: the gas is contained between two plates a
tance 2L apart~Fig. 1!. The two plates are moving in oppo
site directions with a velocitygL. For not too largeg one

FIG. 1. Velocity profile in a gas under shear.
4158 © 1999 The American Physical Society
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expects that a linear velocity profile will develop, so that t
fluid velocity aty is gyx̂.

We are interested in bulk properties, so we letL go to
infinity, while the shear rateg and the densityr are fixed. To
show the equivalence of the constanta thermostat and the
Gaussian thermostat, it would in principle suffice just to ta
the horizontal dimensions infinite, but this way we can a
move the boundary conditions to infinity. In the real physic
system, asL get larger, the laminar flow becomes unstab
and the system eventually develops turbulence. However
thermostats we will consider assume the stability of the la
nar flow @2#, and suppress turbulence.

There is a well known and often used set of equations
molecular simulations that describe shear, the Sllod~so-
named because of its close relationship to the Dolls ten
algorithm! equations@2#:

qẆ i5pW i1gyi x̂, ~1!

pẆ i5FW i2gpiyx̂2apW i , ~2!

in which qW i ,pW i are the phase space coordinates of particli,
a is the thermostat variable, andFW i represents the force
between the particles. The mass of the particles is taken t
one. The shear rate is constant, buta is not. It is constructed
such that the kinetic energyK5( i ipW i i2/2 in the system is
exactly constant, which gives

a5
1

2K (
i 51

N

~FW i•pW i2gpixpiy!.

This is the isokinetic Gaussian thermostat. Note thata de-
pends on the positions and momenta of all the particles.

The interpretation of Eq.~1! is that pW i is the peculiar
velocity of particlei with respect to the local fluid elemen
that has velocitygyx̂. In the laboratory frame, a reasonab
set of equations to write down is

qẆ i5vW i , vẆ i5FW i2a~vW i2gyi x̂!.

This particular form of the thermostat term is chosen beca
a linear velocity profile is expected, and we want the te
perature to be constant, so the kinetic energy in the fra
that moves with that local velocity is to be dissipated.
Boltzmann equation for the one-particle distribution functi
will give an appropriate description at low densities. Th
equation has to be supplemented by the boundary cond
that the average velocities at the boundariesy56L are
6gL. To get rid of theL dependence, one can transform t
velocities to peculiar velocities:pW i5vW i2gyi x̂. The average
~peculiar! velocity now has to be zero at the boundaries,
whenL→` they have to be zero at infinity: this is the sam
boundary condition as for the standard Boltzmann equat
The transformation to peculiar velocities yields the Sll
equations

qẆ i5vW i5pW i1gyi x̂,

pẆ i5vẆ i2g ẏi x̂5FW i2apW i2gpiyx̂.
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II. KINETIC APPROACH

A. Effective motion of the thermostat

The Gaussian thermostat involves ana that depends on
the position and velocity of every particle, and so it varies
time. We will now derive equations of motion for the the
mostat for which we do not need to know all these positio
and velocities, by introducing one extra thermostat varia
b. The derivation is in two steps: first we consider free flig
and then we take into account the effect of collisions.

During free flightFW is zero so the thermostat is given b

a5
1

N (
i 51

N
2gpiypix

2K/N
. ~3!

Using the equations of motion, one finds that the time
rivative is

ȧ522a21
g2

2K (
i 51

N

piy
2 [22a21b, ~4!

where we have defined the last part as the second therm
variableb:

b5
1

N (
i 51

N g2piy
2

2K/N
. ~5!

We combine these to the thermostat vectoru5(a,b). The
time derivative ofb is expressable again in terms ofa and
b:

ḃ522ab. ~6!

There is a conserved quantity

H5
a22b

2b2
.

After change of variables toX51/(2b) and P5a/b, this
conserved quantity takes on a Hamiltonian formH(X,P)
5 1

2 P22X. The equations of motion areẊ5P and Ṗ51.
The general solution, transformed back tou, has the form

u~ t !5
1

22H1~ t2t0!2 S t2t0

1 D ,

with t0 a constant.
So far, we only considered free flight. The duration of

free flight is very small in a system ofN particles: it is of the
order of (Nn)21, where n is the collision frequency of a
single particle. In a collision,u changes by an amount

Du5
2g

2K S p1x8 p1y8 1p2x8 p2y8 2p1xp1y2p2xp2y

2g@p1y8
21p2y8

22p1y
2 2p2y

2 #
D

[
j~pW 1 ,pW 2 ,n̂!

N
,

where primes denote the value of the variables after co
sions and n̂ is the collision parameter, i.e.,n̂5(pW 218
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4160 PRE 60R. van ZON
2pW 21)/ipW 218 2pW 21i . As K is of the orderN, Du is of the order
of N21. u itself is of the order of 1. The definition makesj
of the order of 1. During a typical free flight time of on
particle, every particle in the system has collided once
average. In each collision two particles are involved, soN/2
collisions have taken place in the system during this tim
Thus, during one free flight time, the thermostat gotN/2
changes of orderN21 and this adds up to an effect of ord
1, because, as we will see, the average ofDu is nonzero.

We will see later that the effect of the thermostat depe
ing on all the particles, an unphysical idea in some sen
results just in a fluctuating thermostat with well defin
mean and distribution. We are interested in this distributi
It will depend on the distribution ofDu, which depends on
the velocity distribution in the system, which in turn is a
fected by the thermostat distribution. But some general pr
erties can already be derived without this subtle interplay

We want to write down a Boltzmann equation for th
probability distribution functionF(u;t) of the thermostat

]F

]t
1

]

]u
•~ u̇F !5

]F

]t U
c

. ~7!

Here u̇ is given by Eqs.~4! and ~6!. The collision integral
counts the number of states that are lost and gained in c
sions:

]F

]t U
c

5E du* dpW 1dpW 2P~pW 1 ,pW 2 ,u* ;t !E dn̂

rate of ~pW 1 ,pW 2 ,n̂!

3H dS u2u* 2
jW

N
D 2d~u2u* !J ,

in which P is the joint distribution ofpW 1 , pW 2, andu, and

rate of ~pW 1 ,pW 2 ,n̂!5
N

2
rB~ n̂,pW 21!,

wherepW 215pW 22pW 1 . B is the rate of collisions withn̂ given
that the colliding particles have relative velocitypW 21. It can
be expressed in the differential cross sections(n̂,pW 21), which
measures the number of deflected particles per unit s
angle aroundpW 218 when a beam of particles of unit density
incident on one other particle. Ind dimensions,

B~ n̂,pW 21!5ipW 21is~ n̂,pW 21!2
d21un̂• p̂21ud22,

where p̂215pW 21/ipW 21i . The last factor is the Jacobian th
arises because we integrate overn̂ while s is defined per unit
solid angle of pW 218 . Strictly, we ought to takepW 22pW 1

1g x̂(y22y1) instead ofpW 21, but in the Boltzmann approac
the two particles are taken at the same position when t
collide. In an Enskog-type approach this would matter.

To proceed, we need an expression forP in terms ofF
and the one particle distribution functionf (pW ), which we
will take normalized to 1. Forf, we can also write a Boltz-
n

.

-
e,

.

p-

li-

id

y

mann equation, so we will have a system of two coup
Boltzmann equations forf and F. To derive the standard
Boltzmann equation@13# for f, one uses the Stosszahlansa
that states that the two-particle distribution functio
f 2(pW 1 ,pW 2) is proportional to the product of the one partic
distribution functionsf (pW 1) f (pW 2), i.e., that the two particles
are uncorrelated when they collide. We want a generaliza
of the Stosszahlansatz forP, but setting P(pW 1 ,pW 2 ,u)
5 f (pW 1) f (pW 2)F(u) can’t quite be right for the following rea
son.

The Stosszahlansatz can be generated by taking the p
space densityr($pW i%) to be ) i 51

N f (pW i), i.e., all the particles
are uncorrelated~arguably, this is too strong a condition, b
it will serve to make our point!. Let

us~pW !5
N

2K S 2gpypx

g2py
2 D ,

such that

u5
1

N (
i 51

N

us~pW i !,

then the quantity

P~pW 1 ,pW 2 ,u![E dpW 3 . . . dpW Nr~$pW i%!dS u2

(
i 53

N

us~pW i !

N22
D

[ f ~pW 1! f ~pW 2!F~u!

factorizes, because the delta function doesn’t involvepW 1 and
pW 2. One easily derives that

P~pW 1 ,pW 2 ,u!5H N

N22J 2

PS pW 1 ,pW 2 ,
Nu2us~pW 1!2us~pW 2!

N22
D

and this does not factorize.
P does however factorize to zeroth order when we exp

in N21. To see this, we first expand the expression forP in
terms of the factorizedP:

P~pW 1 ,pW 2 ,u!5 f ~pW 1! f ~pW 2!H F~u!F11
4

NG
1

1

N
@2u2us~pW 1!2us~pW 2!#•

]F

]u J 1O~N22!.

F(u) is given by *dpW 1dpW 2P(pW 1 ,pW 2 ,u) so integrating the
above formula gives a relation betweenF andF:

F~u!5F~u!1
1

N H 4F~u!12@u2^us&#•
]F

]u J 1O~N22!,

where^us&5*dpW f (pW )us(pW ). This relation can be inverted u
to orderN21,

F~u!5F~u!2
1

N H 4F~u!12@u2^us&#•
]F

]uJ 1O~N22!.
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When we put this back into the the formula forP, we getP
expressed in terms off andF,

P~pW 1 ,pW 2 ,u!5 f ~pW 1! f ~pW 2!H F~u!1
1

N
@2^us&2us~pW 1!

2us~pW 2!#•
]F

]uJ 1O~N22!.

This will serve as our Stosszahlansatz. We insert it in
collision integral and perform theu* integration,

]F

]t U
c

52H E dpW 1dpW 2dn̂f ~pW 1! f ~pW 2!rB~ n̂,pW 21!
j

2J • ]F

]u

1
1

N H E dpW 1dpW 2dn̂f ~pW 1! f ~pW 2!rB~ n̂,pW 21!
j

2
@us~pW 1!

1us~pW 2!22^us&#J :
]2F

]u]u
, ~8!

where we expanded inN21 once more. We define the colli
sional averages:

S a

bD[
1

2E dpW 1dpW 2dn̂f ~pW 1! f ~pW 2!rB~ n̂,pW 21!j~pW 1 ,pW 2 ,n̂!.

The Boltzmann equation for the thermostat can now be w
ten as

]F

]t
1

]

]a
$@22a21b1a#F%1

]

]b
$@22ab1b#F%

5O~N21!.

This is of the form of Eq.~7! in which points in theu phase
space follow the effective free flight dynamics

u̇5S 22a21b1a

22ab1b D .

This amounts to just adding the average effect of collisio
to the change ofu.

Some typical trajectories inu phase space are plotted
Fig. 2, both with and without the effect of collisions. Whe
(a,b)Þ0, it is no longer possible to derive the equations
motion from a Hamiltonian: the motion is dissipative, a
there exists a fixed pointu05(a0 ,b0), defined by

22a0
21b01a50; 2a0b05b. ~9!

Physically, one expects the system to heat up without a t
mostat, so the thermostat should act as a friction:a0 is posi-
tive. To consider the stability of the fixed point, we lineari
the equation of motion around it. Writingu5u01du, we get

du̇52S 4a0 21

2b0 2a0
D du. ~10!

The eigenvalues of the matrix are 3a06Aa0
222b0. b0 is

positive, so the fixed point is stable only ifa0.0, consistent
with the physical expectation. Furthermore, from the defi
e

t-

s

f

r-

-

tions in Eqs.~3! and ~5!, one can see thata0
2,b0, so the

eigenvalues are complex and the fixed point is a stable sp
If we take an initial distribution within the domain of attrac
tion, all points will end up in this fixed point. Thus, in th
stationary state, the distribution of the thermostat is ad func-
tion at u0,

F~u!5d~u2u0!.

B. Boltzmann equation for the one particle distribution
function

As we mentioned, the analysis is not complete withou
second Boltzmann equation, for the one particle distribut
function f (pW ;t). The difficult parta priori is what to do with
the free flight term2apW i . The analysis of the thermosta
variables, however, showed that thea is, in the stationary
case, a constant, so we just replacea by a0:

] f

]t
1

]

]pW
$@2gpyx̂2a0pW # f %5J~ f , f !,

where we considered again only the uniform case. For
stationary case we are also interested in the time deriva
disappears. The collision integral is@13#

FIG. 2. Some typicalu trajectories of the thermostat. The firs
figure is without collisions, the second one is with collisional av
agesa andb set to the arbitrary values of20.18 and 0.04, respec
tively.
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J~ f , f !upW 5pW 1
5E dpW 2dn̂rB~ n̂,pW 21!$ f ~pW 18! f ~pW 28!

2 f ~pW 1! f ~pW 2!%.

In some analytic work@10,11#, a constanta is also used and
its value is determined by demanding that the second
ment ^ipW i2&5*ipW i2f (pW )dpW is a conserved quantity. Thi
yields

a52g
^pxpy&

^ipW i2&
. ~11!

Note that ^ipW i2& is constant and equal to 2K/N, so this
choice ofa is very analogous to Eq.~3!. In fact the solution
of Eq. ~9! determining the thermostat fixed point, is thisa,
together with

b5g2
^py

2&

^ipW i2&
. ~12!

To show this we considera andb,

a5
2g

2K/NE dpW 1dpW 2dn̂rB~ n̂,pW 21! f ~pW 1! f ~pW 2!

3
1

2
$p1x8 p1y8 1p2x8 p2y8 2p1xp1y2p2xp2y%

5
2g

^ipW i2&
E dpW 1dpW 2dn̂rB~ n̂,pW 21!p1xp1y

3$ f ~pW 18! f ~pW 2!2 f ~pW 1! f ~pW 2!%

5
2g

^ipW i2&
E dpW J~ f , f !pxpy ,

b5
g2

^ipW i2&
E dpW J~ f , f !py

2 .

We insert for J( f , f ) the left-hand side of the Boltzman
equation and find after partial integration

a52a0

^pxpy&

^ipW i2&
2g2

^py
2&

^ipW i2&
52a0a2b,

b52a0g2
^py

2&

^ipW i2&
52a0b.

Combined with Eq. ~9!, we see that indeed (a0 ,b0)
5(a,b) given by Eqs.~11! and ~12!, is the self-consisten
solution.

III. THERMOSTAT FLUCTUATIONS

When N is finite, there are fluctuations around the the
mostat valuea0. One can see that the first correction, on t
right-hand side of Eq.~8! has a diffusive form, with a diffu-
sion coefficient of orderN21. Combined with the drift to-
o-

-

wards a fixed point from the left-hand side, this will mak
the thermostat distributionF peaked around this point, with
width of orderN21/2. For largeN the width is so small that
the linearized equation, Eq.~10!, is a good approximation for
most of the distribution. For a linear fixed point, the dist
bution would be Gaussian. So the distributionF(a,b) will
become Gaussian for largeN, except in the tails, where th
linearized equation does not hold.

The Gaussian nature of the distribution also carries o
to the finite time average ofa,

ā5
1

tE0

t

a~ t !dt.

For large timest, the thermostat will spend a long time i
the neighborhood of the fixed point (a0 ,b0), so ā will also
be Gaussian distributed for largeN, but, again, with devia-
tions for large fluctuations. This all is in accordance w
what one would expect from a central limit theorem.

Bonettoet al. @14# find a Gaussian distribution forā, but
mention that the Gaussian was not what they expected
fact, that it couldn’t be Gaussian, because it would give
kind of generalized fluctuation-dissipation relation~see also
@15#! when combined with the fluctuation theorem of Ga
lavotti and Cohen@16#.

However, the deviations from the Gaussian nature at la
fluctuations prohibit this derivation of far-from-equilibrium
fluctuation-dissipation relations. The fluctuation theore
states that the probabilityp(p) of finding that ā is pa0,
divided by the probability that it is2pa0, satisfies for large
t,

p~p!

p~2p!
5exp@tdNa0p#.

The result was found for Anosov systems, but has b
found in numerical simulations@17# and in Langevin equa-
tions @18# too, and seems to have a broader validity@19#.
Combined with a Gaussian form ofp, one gets a relation
between the variance and the mean of the distribution, i.e
kind of fluctuation-dissipation relation. The variance can
linked to a correlation function and~generalized! Green-
Kubo formulas emerge@14#. But for these to hold, the
Gaussian character has to be guaranteed for negativeā also,
and the central limit theorem, nor an extension of the ana
sis given here, could justify that. Recently this was ackno
edged by Searles and Evans@20# and the Green-Kubo rela
tions far from equilibrium were refuted in their molecula
dynamics simulations. This does not totally explain the
sults of Bonettoet al. @14#, who get a Gaussianp(p) for just
10 particles, the Gaussian clearly covering negativep as
well. There are of course uninvestigated prefactors in
widths of the Gaussian and in range of validity.

Only when we are near equilibrium the fluctuation the
rem and the central limit theorem can be combined, provid
we first take the limit of the external field going to ze
before we take the thermodynamic limit, even though we c
take a large number of particles throughout. In such
scheme, the distributionp(p) is centered almost aroun
zero, such that it always applies to some negativep.
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IV. CONCLUSIONS

We have treated the Gaussian thermostat in a sheared
tem of short range interacting particles at low density us
kinetic equations. We found that in the thermodynamic lim
the thermostat force becomes a friction force with a cons
friction coefficient. The value of this constant was shown
be consistent with the requirement that the second mom
of the one particle distribution function is conserved. Th
conclusion did not depend on a smallness of the shear
so it applies also far from equilibrium. The constant frictio
force has been used in other work@10,11# and the results
from those should apply equally to Gaussian thermosta
systems, in the thermodynamic limit.

We briefly discussed finiteN corrections. These give ris
to fluctuations of the friction coefficient around its mean,
the order of 1/AN. The fluctuations are close to Gaussian
large N, except for very large fluctuations away from th
mean. Far-from-equilibrium Green-Kubo relations rely
Ap
-

-

-

ys-
g
,
nt

nt

te,

d

f
r

one derivation at least@14# on the fluctuation theorem@16#,
which concerns large fluctuations. The breakdown of su
Green-Kubo relations recently found by Searles and Ev
@20# has its origin in the deviations from the Gaussian nat
for large fluctuations. Near equilibrium one doesn’t need
large fluctuations.
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